Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Polymeric diaquabis[$\mu_{4}-1,3,5$-benzene-tricarboxylato(3-)]((%5Cmu-4,4%5E%7B%5Cprime%7D)-bipyridine)trizinc(II)

Zhan Shi, Ying Hou, Jia Hua, Guanghua Li and Shouhua Feng*

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130023, People's Republic of China
Correspondence e-mail: shfeng@mail.jlu.edu.cn

Received 9 June 2003
Accepted 25 June 2003
Online 31 July 2003

The solvothermal reaction of zinc(II) acetate with 1,3,5benzenetricarboxylic acid and 4,4'-bipyridine in 1-butanol and acetic acid solution gives the title complex, $\left[\mathrm{Zn}_{3}\left(\mathrm{C}_{9} \mathrm{H}_{3} \mathrm{O}_{6}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$. There are two different coordination environments for the Zn atom, namely $\mathrm{ZnNO}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$ and ZnO_{4}; in the latter case, the Zn atom lies on a twofold symmetry axis. Carboxylate-bridged $\mathrm{Zn}_{3}\left(\mathrm{O}_{2} \mathrm{C}\right)_{6}$ clusters are connected through 1,3,5-benzenetricarboxylate and 4,4'-bipyridine ligands (which lie about inversion centers), yielding a three-dimensional framework.

Comment

In recent years, studies of the synthesis of metal-organic frameworks from transition metals and organic ligands have been developed extensively because of the crystallographic diversity of these frameworks and their potential applications in catalysis, non-linear optics, magnetism and molecular recognition (Eddaoudi et al., 2001; Zaworotko, 2001; Evans \& Lin, 2002). Ligands with pyridyl or carboxylate groups are employed the most often in the design and synthesis of novel metal-organic frameworks; for instance, 1,3,5-benzenetricarboxylic acid (H_{3} btc) and 4, 4^{\prime}-bipyridine ($4,4^{\prime}$-bipy) have been applied widely to the construction of frameworks (Yaghi et al., 1997; Chui et al., 1999; Livage et al., 2001). Recent efforts in this field have focused largely on the combination of pyridyl and carboxylate ligands (Suresh et al., 2001; Karanovic et al., 2002). Huh et al. (2002) reported a one-dimensional metalorganic framework with a formula of $\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{btc}\right)_{2}\left(4,4^{\prime}\right.$-bipy $)$ synthesized by a hydrothermal reaction, which is the only example of mixed ligands of H_{3} btc and $4,4^{\prime}$-bipy. We report here the solvothermal synthesis and crystal structure of a three-dimensional zinc(II)-based metal-organic framework, namely $\left[\mathrm{Zn}_{3}(\text { btc })_{2}\left(4,4^{\prime} \text {-bipy }\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$, (I).

The asymmetric unit and labeling scheme are shown in Fig. 1. There are two different coordination environments for
the Zn atoms, namely Zn 1 and Zn 2 , both having tetrahedral geometry (Table 1). Atom Zn 1 is coordinated to two carboxylate O atoms of two btc ligands, one N atom of a $4,4^{\prime}$-bipy ligand and one coordinated water O atom. In the environment of atom Zn 2 (which lies on a twofold axis), four

(I)

O atoms from four different carboxylate groups occupy the coordinated positions. The three btc carboxylate groups have two different coordination modes, viz. as a monodentate ligand with either atom Zn 1 or atom Zn 2 , and as a bidentate ligand with both Zn 1 and Zn 2 . In the structure of (I), two Zn 1 centers and one Zn 2 center linked by six carboxylate groups from six separate btc ligands produce a trinuclear $\mathrm{Zn}_{3}\left(\mathrm{O}_{2} \mathrm{C}\right)_{6}$ secondary building unit, which forms an ' S ' helical configuration. The 4,4'-bipy ligand lies about an inversion center and these ligands link the ' S ' units into one-dimensional zigzag chains, which lie on the (204) Miller planes, as shown in Fig. 2. Each btc ligand links three zigzag chains through its three

Figure 1
A view of the structure of (I), showing displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $x,-y$, $z-\frac{1}{2}$; (iii) $-x,-y,-z+2$; (iv) $-x, y,-z+\frac{3}{2}$; (v) $-x+1,-y,-z+1$.]

Figure 2

A view of the one-dimensional zigzag chain constructed from 4,4'-bipy ligands (open lines) linking the $\mathrm{Zn}_{3}\left(\mathrm{O}_{2} \mathrm{C}\right)_{6}$ secondary building unit (filled lines). [Symmetry code: (i) $-x, y, \frac{3}{2}-z$.]

Figure 3
A view of the three-dimensional structure of (I) along the c axis (open lines denote btc and filled lines denote 4,4'-bipy).
carboxyl groups, thus yielding a three-dimensional framework (Fig. 3).

Experimental

In a typical synthetic procedure, $\mathrm{Zn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.220 \mathrm{~g})$, H_{3} btc (0.105 g), 4,4'-bipy- $2 \mathrm{H}_{2} \mathrm{O}(0.096 \mathrm{~g})$, 1-butanol (2 ml) and acetic acid (3 ml) were mixed, sealed in a Teflon-lined steel autoclave and allowed to crystallize at 433 K for 120 h . The resulting colorless crystals were washed with deionized water, filtered and dried in air at room temperature.

Crystal data

```
\(\left[\mathrm{Zn}_{3}\left(\mathrm{C}_{9} \mathrm{H}_{3} \mathrm{O}_{6}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\)
\(M_{r}=802.55\)
Monoclinic, \(C 2 / c\)
\(a=10.3816\) (3) \(\AA\)
\(b=18.6749\) (6) \(\AA\)
\(c=14.8264\) (4) \(\AA\)
\(\beta=94.517\) (2) \({ }^{\circ}\)
\(V=2865.55(15) \AA^{3}\)
\(Z=4\)
```

$D_{x}=1.860 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4171
\quad reflections
$\theta=2.2-30.0^{\circ}$
$\mu=2.57 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Block, colorless
$0.29 \times 0.22 \times 0.14 \mathrm{~mm}$

Data collection

Bruker CCD area-detector diffractometer
φ and ω scans
Absorption correction: empirical (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.478, T_{\text {max }}=0.695$
11594 measured reflections
4171 independent reflections
2817 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-14 \rightarrow 9$
$k=-22 \rightarrow 26$
$l=-20 \rightarrow 19$

Refinement

Refinement on F^{2}

> H atoms: see below
> $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0357 P)^{2}\right]$
> where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.44 \mathrm{e}^{-3}$
> $\Delta \rho_{\min }=-0.36 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Zn} 1-\mathrm{O} 3{ }^{\text {i }}$	1.8880 (15)	$\mathrm{Zn} 2-\mathrm{O} 5^{\text {ii }}$	1.9195 (14)
Zn1-O1	1.9428 (14)	$\mathrm{Zn} 2-\mathrm{O} 5^{\text {iii }}$	1.9195 (14)
Zn1-N1	2.0031 (17)	$\mathrm{Zn} 2-\mathrm{O} 2$	1.9592 (16)
Zn1-O1W	2.013 (2)	$\mathrm{Zn} 2-\mathrm{O} 2^{\text {iv }}$	1.9592 (16)
$\mathrm{O}^{\text {i }}-\mathrm{Zn} 1-\mathrm{O} 1$	112.45 (7)	$\mathrm{O} 5^{\mathrm{iii}}-\mathrm{Zn} 2-\mathrm{O} 2$	94.66 (7)
$\mathrm{O}^{\text {i }}-\mathrm{Zn} 1-\mathrm{N} 1$	135.84 (8)	$\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Zn} 2-\mathrm{O} 2^{\text {iv }}$	94.66 (7)
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 1$	99.99 (7)	$\mathrm{O} 5^{\text {iii }}-\mathrm{Zn} 2-\mathrm{O} 2{ }^{\text {iv }}$	117.04 (8)
$\mathrm{O}^{3}-\mathrm{Zn} 1-\mathrm{O} 1 W$	106.49 (9)	$\mathrm{O} 2-\mathrm{Zn} 2-\mathrm{O} 2^{\text {iv }}$	109.43 (12)
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 1 W$	99.12 (8)	$\mathrm{C} 7-\mathrm{O} 1-\mathrm{Zn} 1$	140.94 (15)
N1-Zn1-O1W	96.58 (9)	$\mathrm{C} 7-\mathrm{O} 2-\mathrm{Zn} 2$	142.43 (16)
$\mathrm{O} 5^{\text {ii }}-\mathrm{Zn} 2-\mathrm{O} 5^{\text {iii }}$	124.73 (10)	$\mathrm{C} 8-\mathrm{O} 3-\mathrm{Zn} 1^{\text {v }}$	112.84 (13)
$\mathrm{O} 5{ }^{\text {ii }}-\mathrm{Zn} 2-\mathrm{O} 2$	117.04 (8)	$\mathrm{C} 9-\mathrm{O} 5-\mathrm{Zn} 2{ }^{\text {iii }}$	122.69 (14)
$\begin{aligned} & \text { Symmetry codes: (i) } x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2} ; \text { (ii) } x,-y, z-\frac{1}{2} \text {; (iii) }-x,-y, 2-z \text {; } \\ & -x, y, \frac{3}{2}-z \text {; (v) } \frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z \text {. } \end{aligned}$			

H atoms attached to C atoms were refined as riding, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$, and water H atoms were refined freely, giving $\mathrm{O}-\mathrm{H}$ distances of 0.75 (3) and 0.79 (3) \AA.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXP97 (Sheldrick, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

This work was supported by the National Natural Science Foundation of China (grant No. 20071013), the State Basic Research Project of China (grant No. G2000077507) and a Foundation for 'Chang-Jiang' scholarship from the Ministry of Education of China.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SQ1022). Services for accessing these data are described at the back of the journal.

References

Bruker (1997). SMART (Version 5.044), SAINT (Version 5.01) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
Chui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G. \& Williams, I. D. (1999). Science, 283, 1148-1150.

Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. \& Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-310.
Evans, O. R. \& Lin, W. (2002). Acc. Chem. Res. 35, 511-522.
Huh, H. S., Min, D., Lee, Y. K. \& Lee, S. W. (2002). Bull. Korean Chem. Soc. 23, 619-622.
Karanovic, L., Poleti, D., Rogan, J., Bogdanovic, G. A. \& Spasojevic-de Biré, A. (2002). Acta Cryst. C58, m275-m279.

Livage, C., Guillou, N., Marrot, J. \& Ferey, G. (2001). Chem. Mater. 13, 43874392.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97, SHELXS97 and SHELXP97. University of Göttingen, Germany.
Suresh, E., Boopalan, K., Jasra, R. V. \& Bhadbhade, M. M. (2001). Inorg. Chem. 40, 4078-4080.
Yaghi, O. M., Davis, C. E., Li, G. \& Li, H. (1997). J. Am. Chem. Soc. 119, $2861-$ 2868.

Zaworotko, M. J. (2001). Chem. Commun. pp. 1-9.

